首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   16篇
  国内免费   1篇
化学   217篇
晶体学   3篇
力学   1篇
数学   35篇
物理学   45篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   7篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   21篇
  2011年   18篇
  2010年   10篇
  2009年   7篇
  2008年   14篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   11篇
  2003年   4篇
  2002年   10篇
  2001年   7篇
  2000年   3篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1991年   3篇
  1990年   3篇
  1984年   3篇
  1983年   3篇
  1979年   2篇
  1975年   2篇
  1971年   3篇
  1962年   2篇
  1960年   2篇
  1955年   4篇
  1954年   2篇
  1948年   2篇
  1947年   2篇
  1941年   5篇
  1939年   3篇
  1937年   5篇
  1935年   5篇
  1934年   3篇
  1929年   2篇
  1925年   6篇
  1914年   2篇
  1912年   2篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
31.
Zero‐mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero‐mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentrations with single‐molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor–acceptor fluorophore pairs that diffuse into aluminum zero‐mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large amount of literature that describe their use for single‐molecule fluorescence spectroscopy. We also compared the results between ZMWs milled in gold and aluminum, and found that although gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observed that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states. Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single‐molecule FRET at physiological concentrations.  相似文献   
32.
Walther ME  Wenger OS 《Inorganic chemistry》2011,50(21):10901-10907
A molecular dyad was synthesized in which a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer and a phenothiazine redox partner are bridged by a sequence of tetramethoxybenzene, p-dimethoxybenzene, and p-xylene units. Hole transfer from the oxidized metal complex to the phenothiazine was triggered using a flash-quench technique and investigated by transient absorption spectroscopy. Optical spectroscopic and electrochemical experiments performed on a suitable reference molecule in addition to the above-mentioned dyad lead to the conclusion that hole transfer from Ru(bpy)(3)(3+) to phenothiazine proceeds through a sequence of hopping and tunneling steps: Initial hole hopping from Ru(bpy)(3)(3+) to the easily oxidizable tetramethoxybenzene unit is followed by tunneling through the barrier imposed by the p-dimethoxybenzene and p-xylene spacers. The overall charge transfer proceeds with a time constant of 41 ns, which compares favorably to a time constant of 1835 ns associated with equidistant hole tunneling between the same donor-acceptor couple bridged by three identical p-xylene units. The combined hopping/tunneling sequence thus leads to an acceleration of hole transfer by roughly a factor of 50 when compared to a pure tunneling mechanism.  相似文献   
33.
A propeller-shaped boron-nitrogen compound (NB(3)) with three binding sites for fluoride anions was synthesized and investigated by optical absorption, luminescence, and ((1)H, (11)B, (13)C, (19)F) NMR spectroscopy. Binding of fluoride in dichloromethane solution occurs in three clearly identifiable steps and leads to stepwise blocking of the three initially present nitrogen-to-boron charge transfer pathways. As a consequence, the initially bright blue charge transfer emission is red-shifted and decreases in intensity, until it is quenched completely in presence of large fluoride excess. Fluoride binding constants were determined from global fits to optical absorption and luminescence titration data and were found to be K(a1) = 4 × 10(7) M(-1), K(a2) = 2.5 × 10(6) M(-1), and K(a3) = 3.2 × 10(4) M(-1) in room temperature dichloromethane solution. Complexation of fluoride to a given dimesitylboryl site increases the electron density at the central nitrogen atom of NB(3), and this leads to red shifts of the remaining nitrogen-to-boron charge transfer transitions involving yet unfluorinated dimesitylboryl groups.  相似文献   
34.
Linear triads with ruthenium photosensitizers are frequently based on the Ru(terpyridine)(2)(2+) unit. We report on vectorial photoinduced electron transfer in a linear triad based on the Ru(bipyridine)(3)(2+) photosensitizer. Electron-hole separation over a 22 ?-distance is established with a quantum yield greater than 64% and persists for 1.3 μs in acetonitrile.  相似文献   
35.
Syntheses of cyclosporine analogues are reported wherein the peptide couplings were achieved in solid phase. The Wang resin was used as the solid support, and the peptide couplings commenced with the residue 11 of the cyclosporine skeleton. The couplings proceeded in a stepwide manner up to the residue MeBmt1, using symmetric anhydrides. The peptides were then cleaved off the resin, and the cyclization was achieved in solution using Castro's reagent. The solid-phase synthesis described herein offers a very efficient method for the rapid synthesis of structurally diverse cyclosporine analogues in small quantities. The biological activities of the synthetic cyclosporine analogues were evaluated in two in vitro assays, including the IL-2 reporter gene assay and the cyclophilin binding assay. The structure-activity relationship is discussed.  相似文献   
36.
We investigate the potential of a single subwavelength aperture milled in an aluminium film to enhance the local electromagnetic field. We compare the Raman scattering of unadsorbed chlorobenzene molecules and the fluorescence emission of Cyanine-5 dyes, having the same excitation and collection setup for both experiments. For the optimal nanoaperture diameter, we report a clear enhancement factor of about 5 of the Raman scattering intensity per unit volume. Since Raman scattering probes the molecular vibrational levels and avoids the resonant pumping of a real excited state, the observed Raman enhancement is disconnected from the effects of the molecular energy levels alteration previously reported for fluorescent dyes. The observations are similar for both Raman and fluorescence experiments, and stand in good agreement with numerical electromagnetic computations of the excitation intensity inside the nanoaperture.  相似文献   
37.
The chemistry of dimethyl mercury on a Pt(111) single crystal surface has been investigated by reflection-absorption infrared spectroscopy (RAIRS). Dimethyl mercury appears to be highly reactive on Pt(111) and readily decomposes on the surface at temperatures of 100 K and above. Adsorption at 100 K initially occurs in a dissociative manner to produce CH3 and CH3Hg species on the surface, both of which are identified as having C3v local symmetry. At higher exposures, molecular adsorption dominates with the Hg---C---Hg axis initially oriented parallel to the surface. This preferred orientation, however, does not persist into the multilayer. Thermal treatment of the surface layer results in multilayer desorption between 130 and 135 K, and no parent molecular species are observed beyond 160 K. Adsorption at 200 and 300 K produces an overlayer consisting primarily of CH3Hg species, which are thermally stable to about 350 K. Subsequent heating to 400 K results in the formation of ethylidyne species which are characterised by RAIRS. Adsorption at 400 K results in the direct formation of an ethylidyne layer estimated to be about 85% of saturated coverage.  相似文献   
38.
We propose a detailed method for the symmetrization of the standard O(3) or SU(2)⊗CI basis |jτ,m〉 (τ=g or u) into the Oh or Td point group. This is realized by means of an orientation matrix called G. The oriented basis obtained in this way allows matrix element calculations for rovibronic spectroscopic problems concerning octahedral or tetrahedral molecules. Particular attention has been put on careful phase choices. A numerical calculation of all the G matrix elements for both integer and half-integer j values up to 399/2 has been performed. Such high angular momentum values are necessary for the case of heavy molecules with high rotational excitation. To calculate the G coefficients with high precision at high j values we pre-calculated the necessary Wigner functions using symbolic MAPLE software and made then the numerical calculations with quadruple precision. The complete list of these coefficients can be obtained freely at the URL: http://www.u-bourgogne.fr/LPUB/group.html. As an illustration, we also present briefly an application to two typical spectroscopic calculations: the pure rotational levels of SF6 in its ground vibrational state and the ν3 band of ReF6 (an open-shell molecule with an odd number of electrons and a fourfold degenerate electronic ground state).  相似文献   
39.
40.
Dramatic differences are found between the ambient and 100 K X-ray structures of [L(2)Ni2Br2](ClO4)2 (L(2) = alpha,alpha'-bis{(5,7-dimethyl-1,4,8,11-tetraazacyclotetradeca-6-yl)-o-xylene), in which the bromide-bridged, bimetallic, macrocyclic ligand complexes of nickel(II) are held face-to-face and in which each bimetallic complex has a net triplet spin multiplicity. The ambient structure of this complex consists of very highly ordered, infinite chains of alternating R and S isomers in which the identical Ni(II) coordination spheres are near to the average expected for the high- and low-spin Ni(II) coordination sites, and there is appreciable stereochemical strain in the linkage of the macrocyclic ligands to the phenyl ring. In contrast, every other dinickel complex of the 100 K structure is displaced about 40 pm along the infinite chains to form tetrameric repeat units (pairs of dinickel complexes), in which each dinickel complex has well-defined high-spin and low-spin Ni(II) coordination sites; the high-spin sites are adjacent in the tetramers, and the stereochemical strain in the linkage to the phenyl spacer is relaxed. The molecular magnetic moments and structural contrasts are similar for the 100 K structure and the previously reported ambient structure of [L(2)Ni2Br3](ClO4) complex for which the molecular magnetic moments also correspond to a single triplet state per complex. The halide-bridged, monochloro- and monobromo dinickel complexes also have triplet spin multiplicity, and they crystallize with a coordinated perchlorate completing the axial coordination of the high-spin Ni(II) site, while the other Ni(II) site of these halide-bridged complexes has equatorial Ni-N bond lengths typical of low-spin Ni(II) coordination. The bridging halide is sandwiched between the face-to-face macrocyclic ligand Ni(II) moieties and slightly off the Ni-Ni axis in all of the complexes. The temperature dependence of the magnetic moments of the series of complexes indicates that their singlet-triplet energy gaps are small, with zero point energy differences that are generally less than 10(3) cm(-1). The very weak metal-metal electronic coupling, the triplet state spin multiplicity of each dinickel complex, and the averaged high-spin/low-spin coordination environments of the ambient structure implicate a vibronic mechanism for the electronic configurational exchange in the dibromo and tribromo complexes. The single molecular vibrational mode that correlates with the configurational exchange in these complexes includes the concerted motion of the bridging bromide between the Ni(II) centers. Activation of this vibrational mode is sufficient to effect the configurational exchange. These complexes present especially clear examples of the effects of the coupling of nuclear vibrational motions to the interchange of electronic configuration between two different centers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号